Type II Blow-up Mechanism for Supercritical Harmonic Map Heat Flow

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow-up for the 1d Nonlinear Schrödinger Equation with Point Nonlinearity Ii: Supercritical Blow-up Profiles

We consider the 1D nonlinear Schrödinger equation (NLS) with focusing point nonlinearity, (0.1) i∂tψ + ∂ 2 xψ + δ|ψ|p−1ψ = 0, where δ = δ(x) is the delta function supported at the origin. In the L supercritical setting p > 3, we construct self-similar blow-up solutions belonging to the energy space Lx ∩Ḣ x. This is reduced to finding outgoing solutions of a certain stationary profile equation. ...

متن کامل

Infinite time blow - up for half - harmonic map flow from R into S 1 ∗

We study infinite time blow-up phenomenon for the half-harmonic map flow { ut = −(−∆) 1 2u+ ( 1 2π ∫ R |u(x)−u(s)| |x−s|2 ds ) u in R× (0,∞), u(·, 0) = u0 in R, (0.1) with a function u : R×[0,∞)→ S. Let q1, · · · , qk be distinct points in R, there exist an initial datum u0 and smooth functions ξj(t) → qj , 0 < μj(t) → 0, as t → +∞, j = 1, · · · , k, such that the solution uq of Problem (0.1) h...

متن کامل

Rigidity in the Harmonic Map Heat Flow

We establish various uniformity properties of the harmonic map heat ow, including uniform convergence in L 2 exponentially as t ! 1, and uniqueness of the positions of bubbles at innnite time. Our hypotheses are that the ow is between 2-spheres, and that the limit map and any bubbles share the same orientation.

متن کامل

Geometry Driven Type Ii Higher Dimensional Blow-up for the Critical Heat Equation

We consider the problem vt = ∆v + |v|p−1v in Ω× (0, T ), v = 0 on ∂Ω× (0, T ), v > 0 in Ω× (0, T ). In a domain Ω ⊂ Rd, d ≥ 7 enjoying special symmetries, we find the first example of a solution with type II blow-up for a power p less than the JosephLundgren exponent pJL(d) = { ∞, if 3 ≤ d ≤ 10, 1 + 4 d−4−2 √ d−1 , if d ≥ 11. No type II radial blow-up is present for p < pJL(d). We take p = d+1 ...

متن کامل

2 1 A ug 2 01 7 ON UNIQUENESS FOR THE HARMONIC MAP HEAT FLOW IN SUPERCRITICAL DIMENSIONS

We examine the question of uniqueness for the equivariant reduction of the harmonic map heat flow in the energy supercritical dimension d ≥ 3. It is shown that, generically, singular data can give rise to two distinct solutions which are both stable, and satisfy the local energy inequality. We also discuss how uniqueness can be retrieved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2017

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnx122